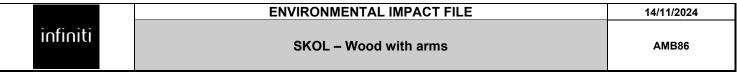
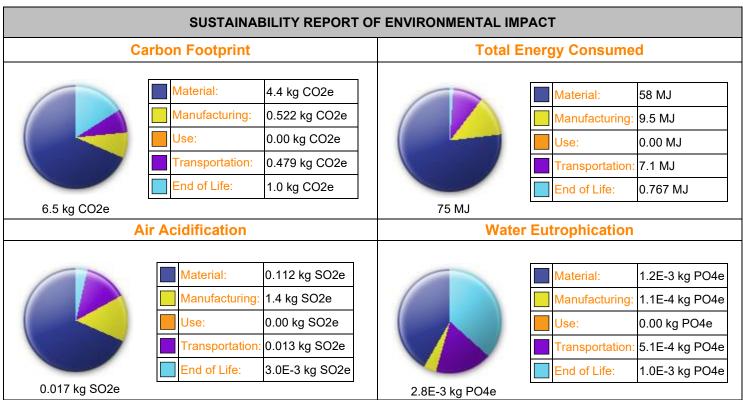


ENVIRONMENTAL IMPACT FILE


14/11/2024


SKOL - Wood with arms

AMB86

Model name:	SKOL – Wood with arms
Weight:	15.33 Kg
Built to last:	3.0 year
Duration of use:	3.0 year

ENVIRONMENTAL IMPACT OF THE COMPONENT

(Most influent components on the environmental impact in the four areas)

Component	Carbon (kg CO ₂)	Water (kg PO ₄)	Air (kg SO ₂)	Energy (MJ)
Telaio con Braccioli	1.9	7.1E-4	6.4E-3	23
Sedile Legno	0.719	5.0E-4	7.0E-4	2.1
Schienale Legno	0.300	2.0E-4	2.0E-4	0.582
Piedino Semisferico	0.029	1.1E-5	9.4E-5	0.742
Distanziale Anteriore	0.014	5.4E-6	4.6E-5	0.365
Rivetto_Ø4_x12	4.3E-3	1.7E-6	1.5E-5	0.054
Distanziale HARMO	3.3E-3	1.2E-6	1.1E-5	0.084

	ENVIRONMENTAL IMPACT FILE	14/11/2024
infiniti	SKOL – Wood with arms	AMB86

Glossary

Air Acidification - Sulphur dioxide, nitrous oxides other acidic emissions to air cause an increase in the acidity of rainwater, which in turn acidifies lakes and soil. These acids can make the land and water toxic for plants and aquatic life. Acid rain can also slowly dissolve manmade building materials such as concrete. This impact is typically measured in units of either kg sulphur dioxide equivalent (SO2), or moles H+ equivalent.

Carbon Footprint - Carbon-dioxide and other gasses which result from the burning of fossil fuels accumulate in the atmosphere which in turn increases the earth's average temperature. Carbon footprint acts as a proxy for the larger impact factor referred to as Global Warming Potential (GWP). Global warming is blamed for problems like loss of glaciers, extinction of species, and more extreme weather, among others.

Total Energy Consumed - A measure of the non-renewable energy sources associated with the part's lifecycle in units of megajoules (MJ). This impact includes not only the electricity or fuels used during the product's lifecycle, but also the upstream energy required to obtain and process these fuels, and the embodied energy of materials which would be released if burned. PED is expressed as the net calorific value of energy demand from non-renewable resources (e.g. petroleum, natural gas, etc.). Efficiencies in energy conversion (e.g. power, heat, steam, etc.) are taken into account.

Water Eutrophication - When an overabundance of nutrients is added to a water ecosystem, eutrophication occurs. Nitrogen and phosphorous from waste water and agricultural fertilizers causes an overabundance of algae to bloom, which then depletes the water of oxygen and results in the death of both plant and animal life. This impact is typically measured in either kg phosphate equivalent (PO4) or kg nitrogen (N) equivalent.

Life Cycle Assessment (LCA) - This is a method to quantitatively assess the environmental impact of a product throughout its entire lifecycle, from the procurement of the raw materials, through the production, distribution, use, disposal and recycling of that product.

Material Financial Impact - This is the financial impact associated with the material only. The mass of the model is multiplied by the financial impact unit (units of currency/units of mass) to calculate the financial impact (in units of currency).